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ABSTRACT

The PALS Land sUrface Model Benchmarking Evaluation pRoject

(PLUMBER) illustrated the value of prescribing a priori performance tar-

gets in model intercomparisons. It showed that the performance of turbulent

energy flux predictions from different land surface models, at a broad range

of flux tower sites using common evaluation metrics, was on average worse

than relatively simple empirical models. For sensible heat fluxes, all land

surface models were outperformed by a linear regression against downward

shortwave radiation. For latent heat flux, all land surface models were outper-

formed by a regression against downward shortwave, surface air temperature

and relative humidity. These results are explored here in greater detail and

possible causes are investigated. We examine whether particular metrics or

sites unduly influence the collated results, whether results change according

to time-scale aggregation and whether a lack of energy conservation in flux

tower data gives the empirical models an unfair advantage in the intercompar-

ison. We demonstrate that energy conservation in the observational data is not

responsible for these results. We also show that the partitioning between sen-

sible and latent heat fluxes in LSMs, rather than the calculation of available

energy, is the cause of the original findings. Finally, we present evidence sug-

gesting that the nature of this partitioning problem is likely shared among all

contributing LSMs. While we do not find a single candidate explanation for

why land surface models perform poorly relative to empirical benchmarks in

PLUMBER, we do exclude multiple possible explanations and provide guid-

ance on where future research should focus.
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1. Introduction67

The assessment and intercomparison of land surface models (LSMs) has evolved from simple,68

site-based synthetic experiments in the absence of constraining observational data (Henderson-69

Sellers et al. 1996; Pitman et al. 1999) to targeted comparisons of process representation (e.g.70

Koster et al. 2006; Guo et al. 2006) and global scale experiments (Dirmeyer et al. 1999; Koster71

et al. 2004; Seneviratne et al. 2013). This history is detailed in Pitman (2003), van den Hurk72

et al. (2011), Dirmeyer (2011) and Best et al. (2015). Recently, Best et al. (2015) noted that73

throughout this history, model performance has been assessed by direct comparison with observa-74

tional products or other LSMs. They argued that without a mechanism to define appropriate levels75

of performance in a given metric, simple comparisons of this nature are not sufficient to gauge76

whether models are performing well or not.77

The PALS Land sUrface Model Benchmarking Evaluation pRoject (PLUMBER, Best et al.78

2015) was constructed to undertake a multi-model examination of LSMs and focus on defin-79

ing benchmarks for model performance, rather than simply comparing LSMs and observations.80

PLUMBER examined the performance of 13 LSMs consisting of variants from 8 distinct models81

(Table 2) at 20 flux tower sites (Figure 1 and Table 1) covering a wide variety of biomes. Part of82

the assessment of performance used four common metrics (Table 3), focused on bias, correlation,83

standard deviation and normalized mean error. Note that the first three metrics provide indepen-84

dent information about model performance, while normalized mean error contains information85

about all three previous metrics, and is commonly used as a summary metric.86

The first group of benchmarks in the PLUMBER experiment were two earlier generation87

physically-based models: the Manabe bucket model (Manabe 1969), a simple soil moisture reser-88

voir model with added surface exchange turbulence; and the Penman-Monteith equation (Monteith89
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and Unsworth 1990), which calculates evapotranspiration based on net irradiance, air temperature,90

humidity, and wind speed. As anticipated (e.g. Chen et al. 1997), modern LSMs outperform these91

simpler physically-based models (Best et al. 2015).92

The second group of benchmarks investigated in PLUMBER were those used in the Proto-93

col for the Analysis of Land Surface models (PALS; (Abramowitz 2012)), a web-based database94

of model simulation and observational land surface datasets, with integrated diagnostic analysis95

tools. This benchmark group consisted of three empirical models: 1lin, a simple linear regression96

against downward shortwave radiation; 2lin, a 2-dimensional linear regression against downward97

shortwave and air temperature; and 3km27, a 3-dimensional, k-means clustered piecewise-linear98

regression against downward shortwave, temperature, and relative humidity. All three empirical99

models were trained and tested with half-hourly flux tower data. Each empirical model was ap-100

plied out-of-sample separately at each Fluxnet site, by calibrating on data from the 19 other sites101

to establish regression parameters, and then using the meteorological data from the testing site to102

predict flux variables using these parameters.103

The two groups of benchmarks were used to quantify expectations of LSM performance. That104

is, they provide some understanding of how close to observations we should expect a LSM to be,105

based on the complexity of the processes at each site and how much information is available in106

meteorological variables about latent and sensible heat fluxes.107

In the PLUMBER experiments, LSMs used the appropriate vegetation type, vegetation height108

and reference height, but otherwise used their default parameter values for the specified vegetation109

type and selected soil parameter values using their own internal data sets. The LSMs were equili-110

brated by using the first year of each Fluxnet site repeatedly as a spin-up phase. More detail about111

the PLUMBER experimental protocol can be found in Best et al. (2015).112
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The results of this comparison are reproduced here for reference in Figure 2. Major columns113

represent different LSMs and the minor columns latent and sensible heat fluxes. The vertical114

axis represents the rank of each LSM for one of these flux variables, averaged across all four115

metrics and 20 flux tower sites. Ranks are performed separately for each LSM against the two116

physically-based approaches and the three empirical models, so that the average rank of any of the117

benchmark models can be different in each LSM’s panel. Ranks were used as a way of aggregating118

performance outcomes across the four metrics and 20 sites.119

The key result from PLUMBER, reported by Best et al. (2015), is that LSMs do not perform120

well in comparison with even simple empirical models for these four common metrics. For sen-121

sible heat (Qh), even the simple one-dimensional linear regression against downward shortwave122

radiation outperforms all of the LSMs (Figure 2). The slightly more complex 3km27 empirical123

model out-performs all models, for all variables (including net ecosystem exchange of CO2, not124

shown here). These results are disturbing, but it is not at all clear from the original experiment125

what is causing these performance problems, or even if they are particularly meaningful. There126

are three categories of possible causes of the apparent poor performance by the LSMs:127

• The apparent poor performance is due to problems with the PLUMBER methodology;128

• The apparent poor performance is due to spurious good performance of the empirical models129

(e.g. systematic observational error, or empirical models lack of energy conservation con-130

straint); or131

• The poor performance is real, and is due to poor representations of physical processes, process132

order or ability to prescribe appropriate parameter values in LSMs.133

Best et al. (2015) did not systematically examine the PLUMBER results in the context of these134

three categories. Our goal is to either identify the cause of the apparently poor behavior of the135

7



LSMs, or - equally usefully - discount possible causes of the problems. Here, we design and136

execute a number of experiments that target these three categories. As this is a series of discrete137

experiments, we describe the methods and results together, for each experiment divided into the138

three categories described above.139

2. Methodology and Results140

a. Possible cause #1: PLUMBER methodology141

There are a number of aspects of the PLUMBER methodology that warrant closer examina-142

tion. Here we investigate some potentially problematic aspects: the use of ranks instead of metric143

values; aggregation over sites and metrics; the possibility that PLUMBER was conducted on the144

wrong time scale; and the simulation initialization procedure.145

1) ARE RANKS REPRESENTATIVE?146

We first confirm that the PLUMBER ranks are a reasonable representation of the underlying147

relative real performance values for each metric and variable. PLUMBER used ranks in place of148

metric values because metric values are not comparable or easily normalisable due to their com-149

plex distributions. However, ranks do not necessarily capture all of the nuance of the underlying150

data and they may misrepresent the performance of the LSMs relative to the benchmarks. For151

example, if empirical models only outperformed LSMs by very small margins, and when LSMs152

outperformed empirical models the margin were much larger, the average rank diagnostic could153

be very misleading.154

To assess whether this is a problem in the PLUMBER results, we calculated the differences in155

metric values between each model (benchmark or LSM), and the next best, and next worst model.156

This measure allows us to make statements about the relative performance of the various models,157
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independent of the distribution of the metrics. If, for example, a model appears equally often at158

each rank, one might expect that the distribution of metric margins associated with that model159

(that is, ‘distance’ to the next best or worst model) to be similar to the overall distribution of160

metric margins across all models. This would not be true, however, if the model was consistently161

only-just beating other models, relative to other pairs of models in general. In that case one would162

expect the distribution of ‘next worst’ margins to have a lower mean than overall ‘next worst’163

distribution, and the distribution of the ‘next best’ margin to have a higher mean.164

Figure 3 shows the distributions of the differences between each model (benchmark or LSM),165

and the next best and worst model. The red and green data highlight the comparisons between166

the LSMs and the next worst, and next best of the 5 benchmarks, respectively. In general, the red167

and green have similar distributions, and those distributions are fairly similar to the differences168

between benchmark pairs (blue histogram), indicating that the ranks are representing the relative169

performances reasonably well. In cases where the LSM is the worst performing model, there is no170

red data, and vice-versa.171

The skew to the right that is clearly visible in most of the plots is to be expected. These metrics all172

have values that converge on 0 (or 1 in the case of correlation, which is inverted), and become more173

dense as they approach 0. Therefore larger differences are to be expected for worse performing174

pairs of models. Since LSMs tend to perform worse than the benchmarks on average, this skew is175

more pronounced. This suggests that it is unlikely that ranks are unrepresentative of the underlying176

relative performance differences.177

2) IS AGGREGATION OVER SITES AND METRICS PROBLEMATIC?178

The results presented in PLUMBER are ranks averaged across multiple metrics and across mul-179

tiple sites for each variable. It is possible that the averaging process is hiding more distinct patterns180
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of performance - perhaps at particular sites, or under particular metrics. To assess whether a par-181

ticular site or metric was unduly influencing the original PLUMBER results, we reproduce the182

main PLUMBER plot separately by metric (Fig. 4), and by site (Fig. 5).183

In both of these plots and in later plots, the original ranks for each LSM from Figure 2 are184

shown in gray. Note however that the ranks shown in gray are not necessarily ordered with respect185

to the benchmarks in the same way that they are in Figure 2, and are only comparable to the black186

line. For example, in Figure 2, most LSMs rank better than 2lin for Qle, but in Figure 4, the gray187

line might suggest that some these LSMs performed worse than 2lin, but this is only because the188

relative rank of 2lin has changed.189

Figure 4 shows that while there is some variation between metrics, it is not the case that the190

LSMs are performing much better or worse than empirical models for any particular metric. Per-191

formance relative to the benchmarks is generally mediocre across the board. The LSMs do perform192

better for standard deviation in Qle, out-performing even the 3km27 model in most cases. Best193

et al. (2015) demonstrated that the LSMs performed better than the empirical benchmarks for the194

extremes of the distribution of each variable, and our analysis helps confirm that finding. As noted195

in Best et al. (2015), the empirical models should be expected to produce lower variability since196

they are regression-based. The normalized mean error and correlation metrics were significantly197

worse than the original aggregate results in Figure 2. Gupta et al. (2009) showed that RMSE and198

Correlation contain substantially similar information, however in this study the correlation metric199

was the least correlated of the four metrics (-0.33 with mean bias; -0.43 with normalized mean200

error; and -0.20 with standard deviation difference). On the other hand, correlations between the201

other three metrics were quite high (0.77 mean bias with normalized mean error; 0.75 mean bias202

with standard deviation difference; and 0.83 normalized mean error with standard deviation bias).203

The fact that the LSMs appear to be performing best under two of these three highly correlated204
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metrics (mean bias and standard deviation difference), at least relative to the 3km27 benchmark,205

may indicate that the PLUMBER results overestimate LSM performance.206

Figure 5 shows that there is considerable diversity of performance between sites for the LSMs. In207

this case, results are averaged over all 13 LSMs, and the four metrics in Table 3. For example, the208

LSMs perform relatively very well for Qh at the ElSaler site. This site is unusual: it is situated on a209

low-lying narrow spit of land between a small lake and the Mediterranean sea and is likely heavily210

influenced by horizontal advection. It is possible that rather than the LSMs performing well here,211

it is actually the empirical models that are performing poorly because they were calibrated on all212

other sites which do not exhibit behaviors seen at ElSaler. This possibility is supported by the fact213

that the models that include some measure of humidity (3km27, Penman-Monteith) perform worse214

than the simpler linear regressions. ElSaler2 is another unusual case - an irrigated crop-land site215

in Mediterranean Spain. The LSMs and Manabe bucket model, which do not have information216

about the additional water input to the system, do very poorly. The unconstrained reservoir in the217

Penman-Monteith equation in this case works very well. There are a number of sites where LSMs218

consistently perform poorly - Espirra provides an example pattern that we might expect from the219

original PLUMBER results - LSMs performing worse than empirical models, but much better than220

early theoretical models. However, there are other sites where LSMs are performing poorly even221

against the older approaches, especially for Qh, such as Amplero, and Sylvania; and there are no222

sites where LSMs perform consistently well relative to the benchmarks for both fluxes. While each223

of these breakdowns - by metric and by site - give us some insight into how LSMs are behaving,224

they do not explain the cause of the general pattern of apparent poor performance.225
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3) DO LSMS PERFORM BETTER ON LONGER TIME SCALES?226

Another possibility is that poor performance in the short time-scale half-hourly responses of227

LSMs are dominating the performance metrics. While versions of these models are designed228

for both climate and weather prediction, here we are largely concerned with long term changes229

in climate and the land surface. In this context, short-time-scale responses may be relatively230

inconsequential, as long as the longer term result is adequate. It is plausible, for example, that short231

time lags in various state variables built into LSMs might be adversely affecting the half-hourly232

model performance, while improving the longer time scale skill of the model. All of the original233

PLUMBER metrics are calculated on a per time step basis, and so do not take this possibility into234

account. To examine this, we recalculate the PLUMBER ranks after first averaging the half-hourly235

data to daily, monthly, and seasonal time steps.236

Figure 6 reproduces the PLUMBER plots after averaging data to three different time-scales:237

daily averages, monthly averages, and seasonal averages. While there are some changes in these238

plots, there is no major improvement of LSM behavior relative to the empirical benchmarks. On239

all time-scales, the LSMs are consistently out-performed by the empirical benchmarks suggesting240

that the problems found in PLUMBER are not related to time-scale.241

4) ARE INITIAL CONDITIONS A PROBLEM?242

It is possible that the initialization procedure used in PLUMBER is inadequate. If the spin-up243

period was not long enough for state equilibration, or it was not representative of the period im-244

mediately preceding the simulation, then we would expect to see a stronger bias in the early parts245

of the first year of the data for each run. PLUMBER used a spin-up procedure that involved re-246

peatedly simulating the first year at each site 10 times, before running over the whole period and247

reporting model output. To test whether poor spin-up might be the cause of the poor performance248
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seen in PLUMBER, we calculated a number of new metrics over each simulation, for each vari-249

able, based on daily average data. First we calculate the day at which each of these simulation250

time series first crosses the equivalent observed time series, both as an absolute value, and as a251

percentage of the length of the dataset, which gives some indication of whether the simulation has252

converged on the observed data. Next, we calculate the difference in slope parameters of a linear253

regression over the two time series, and also the significance of this difference (where the null254

hypothesis is no difference). Lastly, we check if the bias is decreasing - that is, if the simulations255

have positive mean errors, is the trend slope negative (e.g. mean error is closer to zero in the second256

half of the time series), or vice-versa.257

Figure 7 shows the results of the approaches described above. For each of the two fluxes (hori-258

zontal rows), using daily average data, it shows: the first day in the time series that the simulated259

flux is equal to, or crosses, the observed flux (1st column, logarithmic scale); as for the first col-260

umn, but expressed as a percentage of the time series (2nd column); difference in the slopes of261

linear regressions of simulated and observed series over time (W/day); significance of the differ-262

ence in the previous metric - values left of the red line are significant at the α = 0.05 level (˜44% of263

all values); and the rate at which the bias is decreasing, measured by means of model error divided264

by the gradient of model error - negative values indicate the simulations have a trend toward the265

observations. Each panel is a histogram, with each entry colored by the Fluxnet site it represents.266

The first two metrics show that in nearly all cases, the simulations’ time series quickly cross267

the observed time series (76% of simulations cross in the first 1% of the period, and 97% cross in268

the first 10%), indicating that it is unlikely that lack of equilibration explains the poor behavior of269

the LSMs relative to the benchmarks. The third and fourth metrics show the differences between270

the trends in the observations and the simulations, and the significance of those differences. In271

the majority of cases, effect sizes are quite small, with 61% of absolute trend differences less than272
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0.02 W/day, or 7.3 W/year (column 3, Figure 7), which is well within the standard error of the time273

series. 45% of these trend differences are significant at the α = 0.05 level (column 4, Figure 7),274

but there is no indication of a pattern of trends toward a lower bias - 54% of simulations have275

a trend that increases rather than decreases the bias (column 5). The colors in the plot specify276

the Fluxnet sites, and as indicated, aside from the two first-crossing metrics, there is very low277

correlation between metrics (r << 0.05, see Table 4).278

We have therefore not been able to find obvious major systematic flaws in the PLUMBER279

methodology. The poor performance of the LSMs in PLUMBER, relative to the empirical bench-280

marks, cannot be dismissed based on any obvious flaw in the methodology.281

b. Possible cause #2: Spurious empirical model performance282

We next examine the possibility of spurious good performance by the empirical models. While283

there are a number of possibilities, related to data quality, we focus on one main possibility that has284

been brought up multiple times by the community in response to the original PLUMBER paper.285

1) LACK OF ENERGY CONSERVATION CONSTRAINTS286

The obvious candidate is that the empirical models are able to perform so well relative to the287

LSMs because they do not have any kind of built in constraint for energy conservation. This288

allows them to potentially produce results that predict individual flux variables quite well, but are289

physically inconsistent (e.g. outgoing flux energy is not constrained by net radiation). One way290

to test this hypothesis is to build empirical models that have additional constraints that ensure that291

energy is conserved.292

Due to the effects of energy storage pools (mainly in the soil), it is not a trivial matter to produce293

a conservation-constrained empirical model. We therefore approach the problem from the oppo-294
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site direction: we assume that energy conservation in the LSMs is correct and use the calculated295

available energy (Qh+Qle) from each LSM to constrain the empirical model output:296

Q′emp =
Qemp

(Qhemp +Qleemp)
× (Qhlsm +Qlelsm)

where Qemp can be either Qhemp or Qleemp. An alternative approach might be to correct the obser-297

vations with the LSMs’ total energy, and re-train the empirical models on the corrected data. We298

have no a priori reason to expect that this approach would provide qualitatively different results,299

and it would require significantly more computation.300

Our approach effectively forces each empirical model to have the same radiation scheme and301

ground heat flux as the LSM it is being compared to (since available energy, Qle+Qh, is now302

identical), and preserves only the Bowen ratio from the original empirical model prediction. While303

this makes the empirical models much more like the LSMs, it informs us whether the empirical304

models were simply reproducing a systematic lack of energy conservation in the flux tower data.305

That is, if these modified empirical models perform similarly to their original counterparts, then306

energy conservation, while no doubt a real data issue, is not the cause of this result. If the reverse307

is true – that the modified empirical models no longer outperform the LSMs – there are at least308

two possibilities. Most obviously, the empirical models may indeed be fitting to systematically309

biased observational data. Alternatively, poor available energy calculations on the part of LSMs310

might cause the degradation of the modified empirical models, so that energy conservation is less311

of an issue. There are some difficulties with the transformation shown in the equation above.312

When the denominator in this equation approaches 0 the conversion could become numerically313

unstable. Under these conditions we replace all values of Qh and Qle with the values from the314

LSM whenever |Qhemp +Qleemp| < 5 Wm−2. This effectively means that only day time values315

are modified.316
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If the energy conserving empirical models still outperform LSMs, it would indicate that calcu-317

lation of available energy in LSMs is relatively sound, and that the energy partitioning approach318

is the likely cause of the poor performance. That is, even when empirical models are forced to319

have the same available energy as each LSM, performance ranks are essentially unchanged. Al-320

ternatively, if the energy conserving empirical models perform poorly, it may either indicate that321

empirical models are trained to match systematically biased, non-conserving flux tower data, or322

that the calculation of available energy in LSMs is the main cause of their poor performance.323

The results of the energy-conserving empirical model experiment are shown in Figure 8. We324

wish to reinforce that Figure 8 shows precisely the same LSM, Manabe Bucket and Penman-325

Monteith simulations as Figure 2, and only the empirical benchmarks have changed (which in turn326

affects the other models’ ranks).327

It is clear that this change to the empirical models offers some LSMs a relative improvement328

in their rank. NOAH2.7.1 and ORCHIDEE now beat all empirical models for Qle, for example.329

This is far from a uniform result, however. Note also that Qle performance from CABLE2.0 SLI,330

ISBA-SURFEX3l, NOAH 3.2 is now worse than 2lin, which was not the case in Figure 2. The331

energy constraint has actually improved the empirical model performance in these cases. It is also332

still the case that all LSMs are outperformed by the energy conserving versions of 1lin for Qh. It333

therefore appears unlikely that the energy conservation issues in flux tower data are the cause of334

the empirical models’ good performance.335

While some of the changes seen in Figure 8 can be attributed to the forcing of energy conser-336

vation on empirical models, there are other possible interpretations. They could be reflecting the337

effect that each LSM’s available energy calculation had on the empirical models. For example, if338

a particular LSM had a very poor estimate of instantaneous available energy (that is, Qle+Qh),339

because of issues in its radiation or soil heat transfer schemes, forcing this estimate on all of the340
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empirical models might degrade their performance in a non-physical way. This would of course341

appear in Figure 8 as a relative improvement in the LSM’s performance. It is not clear whether342

this, or accounting for a lack of energy conservation in empirical models, is the cause of the im-343

provements and degradations in performance we see in Figure 8.344

One unavoidable problem with this methodology is that if the flux tower data has a consistent345

bias in the evaporative fraction, then the LSMs will appear to perform relatively worse due to the346

empirical models over-fitting that bias. Figure 9 shows the biases in simulated evaporative fraction347

at each site across all LSMs. This plot consists of standard box-plots showing the mean, first and348

third quartiles, and outliers. The biases are calculated by taking349

(
Qlesim

Qhsim +Qlesim
− Qleobs

Qhobs +Qleobs
)

using daily data, and excluding all cases where |Qh+Qle| < 1 Wm−2 for either simulations or350

observations, to avoid numerical instability. It is clear that at some sites the LSMs have an apparent351

bias in evaporative fraction. It is not possible to be certain whether this bias is in the flux tower352

data, or due to shared problems between the LSMs. We address this in the discussion.353

This analysis indicates that, while problems with the flux tower data may contribute in a small354

way, they do not explain the entirety of the poor performance seen in PLUMBER. In general, the355

LSMs are not only predicting total heat poorly, they are also predicting the partitioning of that heat356

poorly.357

c. Possible cause #3: Poor model performance358

Finally, we search for indications that the problem might lie with the LSM simulations them-359

selves. We examine two possibilities: LSM performance over short time scales and performance360
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at different times of the day. We also explore how the LSMs perform as an ensemble, in an attempt361

to assess whether problems might be shared across models.362

1) HOW DO LSMS PERFORM OVER SHORT TIME SCALES?363

When investigating the PLUMBER methodology, as outlined above, we examine whether short364

time scale variability is dominating the PLUMBER metrics by averaging data to different time365

scales before re-calculating performance measures. The inverse of this possibility is that rather366

than getting the short time-scale aspects of climate wrong, the LSMs are actually simulating the367

high-frequency responses well, but failing over the long-term. This would occur, for example, if368

the magnitude of the soil moisture reservoir were the wrong size, or the input or output to this369

reservoir caused it to dry too quickly or too slowly. To test this possibility, we remove all of the370

low frequency variability from the error time series, by first bias-correcting the simulation on a371

daily basis for each variable (Q′sim = Qsim−Qsim +Qobs, for each day), and then removing the372

average daily cycle over the remaining residuals. This gives us a model time series that has the373

same mean daily temperature and average daily cycle as the observations, but retains all of the374

modelled high-frequency variability.375

The high-frequency only results are shown for each metric in Figure 10. Due to the nature of376

the bias correction, the bias metric (row 2 in Figure 4) is always zero for the LSMs, resulting in a377

trivial rank of 1, and so we remove the bias metric from these results. The effect this has can be378

seen by comparing Figure 10 to row 1, 3 and 4 of Figure 4. In all three metrics there are notable379

improvements in LSM ranks (averaged over all sites), suggesting that a significant portion of LSM380

error is likely due to the modulation of instantaneous model responses by the model states (for381

example soil moisture and temperature). The degree of improvement does vary between models to382
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some degree - CABLE SLI, COLASSiB, and NOAH3.3 improved in absolute rank in all metrics383

as a result.384

2) DO LSMS PERFORM BETTER AT DIFFERENT TIMES OF THE DAY?385

The LSMs appear to be having problems extracting all of the available information from the386

available meteorological forcings, especially SWdown, as evidenced by the 1lin model outper-387

forming each LSM for Qh. It thus seems likely that the LSM performance might vary according388

to the availability of that information. To test this possibility, we split the analysis over time of389

day, splitting each time series into night (9pm-3am), dawn (3am-9am), day (9am-3pm), and dusk390

(3pm-9pm), and repeating the analysis for each sub-series.391

The time-of-day analysis is presented in Figure 11. As might be expected, there is clear variation392

in LSM performance relative to the benchmarks at different times of the day. The LSMs generally393

outperform the 1lin and 2lin model at night time. This is to be expected, as these two benchmarks,394

1lin especially, have essentially no information at this time of day. In general, the LSMs all appear395

to be having difficulty with both fluxes around sunrise. It is worrying that some of the LSMs396

appear to be doing worse than a linear regression on sunlight during the night time for latent heat397

(COLASSiB, ISBA SURFEX 3l, ORCHIDEE). However, the performance differences are small398

in those cases, and may be simply an artifact of the data (for example the empirical models fitting399

noise in Fluxnet). Overall it does not appear to be the case that the LSMs are performing well at400

any particular times of the day.401

3) HOW DO THE LSMS PERFORM AS AN ENSEMBLE?402

Lastly, we investigate whether the nature of the poor performance is a problem that is shared403

among models by examining the performance of the LSMs as an ensemble. Model ensem-404
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ble analysis has a long history in the climate sciences (e.g. the Climate Model Intercomparison405

Projects, Meehl et al. 2007; Taylor et al. 2012), as well as in the land surface modelling commu-406

nity (Dirmeyer et al. 2006). Ensemble analysis allows us to identify similarities in performance407

between the LSMs. If each LSM is performing poorly for very different reasons, we might ex-408

pect that at a given site, the time series of model error (model-observed) between different models409

would be uncorrelated. If this were the case, the multi-model mean should provide a significantly410

better estimate of the observed time series, since the eccentricities causing each model’s poor per-411

formance will tend to cancel each other. By analogy, the standard deviation of the mean of n412

random number time series, each with standard deviation 1 and mean 0, is 1/
√

n. As an attempt413

to try to ascertain the degree of shared bias among LSMs, we choose to examine three different414

ensemble means - the unweighted average, the error-variance based performance-weighted mean,415

and the error-covariance independence-weighted mean (Bishop and Abramowitz 2013; Haughton416

et al. 2015). A priori, we should expect these ensemble means to perform differently in differ-417

ent circumstances. First, as mentioned above, if errors from different models have pair-wise low418

correlations, we should expect the model mean to perform better than individual models. Next, if419

there are substantial differences in performance of the models, we should expect the performance-420

weighted mean to out-perform the unweighted mean. If performance across the ensemble is similar421

but errors are highly correlated in a subset of the LSMs, then we should expect the independence-422

weighted mean to out-perform both the unweighted mean and performance weighted mean. The423

corollary is that if the independence-weighted mean does not out-perform the unweighted mean,424

this likely indicates that problems causing poor performance are shared among LSMs.425

The results of the performance of the three ensemble means is shown in Figure 12. The means all426

perform similarly, or slightly better than the best LSMs under each metric (see Figure 4). However,427

the means are still out-performed by the empirical models in many cases. It is notable that there is428
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also very little improvement under either of the weighted means. The performance-weighted mean429

only gives a slight improvement, which confirms that the differences in performance between430

LSMs relative to the benchmarks are not significant. The independence weighted mean also has431

little improvement, which gives an indication that problems with performance are shared across432

LSMs.433

3. Discussion434

The PLUMBER results are worrisome and it seems sensible to approach them with some skep-435

ticism. It is tempting to write off the results as an artifact of the PLUMBER methodology, but this436

does not appear to be the case. Over all LSMs tested, there is a consistent problem of poor perfor-437

mance relative to basic empirical models that is not obviously related to simulation initialization,438

particular sites or metrics biasing the analysis, or the time scale of the analysis. Despite the very439

wide range of performance ranks across different flux tower sites, once the obvious, understand-440

able cases are removed (especially the ElSaler, ElSaler2 pair of sites, for different reasons), the441

aggregated picture of performance in Figure 2 seems broadly representative of our current LSMs.442

In our energy-conserving empirical model analysis, we rescaled the total available energy in443

the empirical models to match that in each LSM, effectively making the total available energy444

identical in each pair of models, and only comparing the partitioning of that energy into Qh and445

Qle. We then showed that there are biases between the LSMs and the Fluxnet data, but that across446

sites there is no consistent bias that might cause the empirical models to perform spuriously well.447

There are known problems with energy conservation in flux tower data - Rnet = Qle+Qh+Qg is448

unbalanced by 10-20% at most sites (Wilson et al. 2002). However, this does not tell us anything449

about any potential bias in the evaporative fraction. Indeed, Wilson et al. (2002) note that the flux450

biases are independent of the Bowen ratio. Other studies have found that energy balance closure451
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is dependent on stability (Kessomkiat et al. 2013; Stoy et al. 2013). We corrected the empirical452

model with the evaporative fraction, which is very close but more stable than the Bowen ratio453

suggested by Wilson et al. (2002). There is, however, discussion in the literature that eddy flux454

measurements might underestimate sensible heat much more than latent heat (e.g. Ingwersen et al.455

2011; Charuchittipan et al. 2014; Mauder and Foken 2006). This would affect the PLUMBER456

results for sensible heat and might improve LSM ranks. It would not affect the latent heat results457

however and LSMs would still perform worse than the empirical benchmarks for the normalized458

mean error and correlation metrics.459

So, if there is a problem with the LSMs, as appears to be the case, where does it leave us? There460

are two broad possibilities to investigate.461

The first, and perhaps most confronting, is that there are flaws in the structuring, conception462

of the physics, or ordering of processes in the models. The results from the three approaches to463

LSM averaging suggest that such a problem might be largely shared amongst LSMs. LSMs do464

commonly share some similar conceptualizations of land surface processes, even if they do not465

share implementation details. Masson and Knutti (2011) showed how inter-related climate models466

can be. Those results include many of the models used here and it would be interesting to see such467

an analysis performed on LSMs alone.468

Examples of such shared problems might be that all of the LSMs could be missing a major469

component, a relationship between components, or they may share a flawed representation of one470

or more components. This part of the modelling process is hard to analyze rigorously, however471

some analysis of assumptions contained in models and the effects that those assumptions have on472

model performance has been undertaken (e.g. Clark et al. 2008; De Kauwe et al. 2013; Zaehle473

et al. 2014). In principle, one could take a single LSM and replace major model components with474

calibrated linear regressions (if the observational data were available to create these), and compare475
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performance, in order to pinpoint which component is the main cause of the poor performance.476

This would likely require a quantity of process level data that is not yet available.477

While we largely present negative results in our attempts to pinpoint these problems, there are478

some indications as to where the problem may lie if model physics is the cause of this result.479

The energy-conserving empirical models give a strong indication that the calculation of available480

energy for Qle and Qh is not the main problem. That is, since the conserving empirical models481

effectively have the same Rnet and ground heat flux as the LSMs, and still broadly outperform the482

LSMs, we assume that the main issue is in the calculation of these fluxes. While there are snow pe-483

riods in some of these data sets, the majority do not include any significant snow - we can probably484

safely ignore snow sub-models as a cause of the overall result. It does appear that there are some485

issues in the available energy calculations that vary across models. Some models, for example,486

do perform better in a relative sense once the empirical models are forced to match their available487

energy (compare Figures 2 and 8). Overall, however, this does not make a qualitative difference488

to LSM ranks against the empirical models. The analysis removing diurnal means (Figure 10)489

also broadly supports the idea that available energy and partitioning is being adversely affected by490

storage. That is, when the error in the diurnal average and average diurnal cycle was removed from491

LSMs, effectively removing any bias from inappropriate soil moisture levels and leaving behind492

only each LSM’s high frequency responses, there was an improvement in performance. Ideally,493

we would like to test directly whether, for example, soil moisture is correlated with the accuracy494

of evaporative fraction prediction. Unfortunately the Fluxnet datasets we used did not all contain495

soil moisture observations. In the cases that did report soil moisture, major challenges exist in496

using these data to evaluate LSMs. Observations are taken over different depths, using different497

measurement strategies, for example. There are also major issues in what soil moisture means498

in a LSM (Koster et al. 2009) and whether this variable can be compared directly with observed499
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soil moisture. We therefore avoid comparisons of the LSM results with observed soil moisture but500

note that if the problems of data quality, consistency of measurements and issues of scale can be501

resolved this would provide a particularly good way forward for resolving why the LSMs perform502

poorly.503

One caveat that must be added here is that these simulations are all run in an offline - uncoupled504

from an atmosphere model. In climate simulation and numerical weather prediction experiments,505

the LSM would be coupled to an atmosphere model which provides feedback to the land surface in506

a way that fixed meteorological forcings can not, and this feedback may provide damping of errors507

that the LSMs produce. Wei et al. (2010) indicates an effect along these lines in dry regions, by508

showing that an ensemble of LSMs coupled to an atmosphere model can produce higher variance509

between the LSMs when they are coupled individually, likely due to the fact that the strength of510

the coupling feedback is divided among the participating LSMs. Holtslag et al. (2007) also find511

that coupled models tend to produce less variance in stable boundary layer conditions because512

the fluctuating surface temperature provides feedback to the heat fluxes. A logical next step is513

therefore to perform a PLUMBER-like benchmarking evaluation in a coupled environment. Due514

to the difficulty of coupling many LSMs with one or more atmosphere models, as well as the515

problem of how to fit the benchmarks, such an experiment would be extremely challenging to516

undertake.517

Calibration is also an ongoing problem, particularly because of the large number of poorly con-518

strained parameters and internal variables, combined with the non-linearity of the models, which519

leads to problems of equifinality. These results might also reflect the compensating effect of cal-520

ibration against stream-flow or gridded evapotranspiration products, where model structural and521

spatial property assumptions form part of the calibration process. Experiment-specific calibration522

may have improved the performance of the LSMs in PLUMBER. However calibrating LSMs per-523
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site would give them an unfair advantage over the empirical models, which are only calibrated out524

of sample, and which use no site-characteristic data. The simulations in PLUMBER were run with525

appropriate reference heights and IGBP vegetation type, using the LSM’s default calibration for526

that vegetation type. Soil characteristics were selected by individual modelling groups. Clearly,527

using broad vegetation classes risk losing a lot of site-level specificity, but there is no way to cal-528

ibrate the LSMs for specific sites while ensuring no over-fitting (e.g. out-of-sample calibration)529

within the PLUMBER dataset, since there are not multiples of each vegetation class represented.530

Improved per-vegetation class calibration using other Fluxnet sites may help, but at least some531

of the LSMs in this study are already calibrated on Fluxnet or similar datasets at multiple sites,532

and should perform reasonably well over these 20 datasets without re-calibration. While there are533

advanced methods of multi-criteria calibration available (e.g. Guerrero et al. 2013; Gupta et al.534

1999), as well as viable alternatives to performance-based calibration (Schymanski et al. 2007),535

it would seem sensible to also focus on model parsimony, especially in components which are536

largely under-constrained. However, even if calibration is part of the problem here, it must be537

remembered that the empirical models are acting on only 1-3 of the 7 meteorological variables538

available to the LSMs, and also take no account of spatial or temporal variables. While it is true539

that adding further forcing variables would not guarantee a better result, for example if those vari-540

ables have systematic errors, the consistency of performance of the empirical models indicates541

that that is not the case for at least downward shortwave radiation, air temperature, and relative542

humidity, and we have no a priori reason to expect it to be the case with the other variables.543

It is also worth reflecting on the fact that the core conceptual process representations in LSMs544

were derived before any high-density data was widely available across different biomes. While545

the majority of these LSMs are calibrated on some site-level data, there is the possibility that our546

conceptually consistent LSMs are in some way not physically consistent with observations. An547
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example of this possibility, that may explain the PLUMBER result that the LSMs are almost always548

worse at simulating Qh compared to Qle, relates to how the models are designed. The formulation549

of Qh and Qle in LSMs commonly refers to a “within canopy temperature” for example, through550

which these fluxes are exchanged with the atmosphere above the canopy. Imagine that this “within551

canopy air temperature” is erroneous. Under these circumstances Qh would systematically be552

simulated poorly relative to Qle, because it is not limited by available moisture. On top of this,553

energy-conservation correction formulas may be partitioning the conservation error poorly.554

We cannot test this in all models involved in PLUMBER, but we can test this idea using one555

of the PLUMBER models. We took CABLE and introduced an error in the initial temperature556

of the canopy air space ranging from -5K to +5K, at the start of each time-step, and we then557

examined the impact of this error on Qh and Qle. Figure 13 shows how the error in Qh and Qle558

scales with the error in within canopy air temperature and shows that the error in Qh increases559

much more quickly than the error in Qle. We are not suggesting here that this is why all LSMs560

testing in PLUMBER show this behavior but we do suggest that there are key variables, common561

to LSMs, that act as pivots in the performance of a LSM and that are not resolved by feedbacks.562

While canopy interception cannot introduce too large an error (because too much evaporation in563

one hour will be compensated by too little in the next hour), if a systematic error is implicit in564

the interpolation of a reference air temperature to a canopy air temperature then this may not be565

compensated by feedbacks and lead to an error that is not resolved on longer time scales. We can566

demonstrate this for CABLE, and we suggest it is a plausible explanation for other LSMs. We567

suspect that other similar pivot variables, not ameliorated by feedbacks, might exist and might568

provide keys to unlocking the PLUMBER results.569

The second possibility is that the LSMs are conceptually correct, but are too complex for the570

task at hand. Modern LSMs have around 40 spatially varying parameters. At the scales that571
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they normally operate - globally or regionally - observations rarely adequately constrain these572

parameters. To get around this issue they are usually calibrated, often using flux tower data, for573

each vegetation type. This process makes assumptions about landscape homogeneity, and forces574

the LSM to behave consistently with the time, place and circumstances of the calibration data.575

Using complex LSMs in this way may be forcing relatively capable models to operate essentially576

as empirical models, and using them out of sample. If we only use very simple metrics this can577

appear to be an issue of equifinality in calibration, but in reality the right answer is obtained for578

the wrong reasons, and as a result poor predictive outcomes are likely.579

If true, this suggests that the appropriate level of complexity for a global LSM is a model with580

a parameter set of approximately the same dimension as the number of independent observable581

surface properties at the global scale - perhaps an order of magnitude smaller than modern LSMs582

today. While this is approximately the amount of information we provide LSMs at this scale, by583

prescribing vegetation and soil types, it is the fixed parameters, or forced co-variation of these pa-584

rameters, that is potentially more important. Related issues of poor parameter constraint were ex-585

plored by Mendoza et al. (2015). It should also be noted that regression methods, which are based586

on maximizing-variance of the variables we attempt to predict, benefit from a simpler method of587

fitting and can make stronger use of some observed variables that are not pure predictors, such as588

relative humidity, which is highly correlated with the Bowen ratio (Barros and Hwu 2002), and589

therefore may have a substantial advantage. However, this only explains the performance of the590

3km27 benchmark, and not the fact that the simpler regressions still out-perform the LSMs for Qh.591

It is also possible that the problems identified by PLUMBER do not have a single cause, and592

are simply an agglomeration of small, individually insignificant errors including some of those593

possibilities identified here. While our results do not explicitly resolve the performance problems594
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shown in the original PLUMBER results, they do help us to rule out a number of possible causes,595

and in doing so, suggest directions for further investigation.596

4. Conclusions597

We investigated three broad categories of possible causes for the key result in the original598

PLUMBER experiment - LSMs being outperformed by simple, out of sample empirical mod-599

els. These were: the experimental methodology of PLUMBER; spurious good performance of the600

empirical models in PLUMBER resulting from systematic bias in flux tower data, and; genuine601

poor performance of LSMs. While not every aspect of PLUMBER methodology was investigated,602

we did establish that particular sites or metrics were not biasing the result. Analyzing data on603

different time scales similarly had little effect, and there did not appear to be any systematic drift604

toward observed values that might be indicative of a systematic failure in the model spin-up pro-605

tocol. We also repeated the experiment with energy-conserving versions of the original empirical606

models used in PLUMBER, constrained by the available energy calculations of each LSM, to try607

to ascertain whether a lack of energy conservation on the part of empirical models was the likely608

cause. Again, this had little effect on the result.609

This leaves only the last of these three causes, the LSMs themselves. The empirical models610

suggest that there is more information in the input data available to reproduce observed latent611

and sensible heat than the LSMs are using. The calculations of the heat fluxes and the model612

states upon which these depend are therefore the most likely candidates for the cause of the large613

discrepancies observed here. It remains a topic for further investigation whether this is ultimately614

the result of, for example, over-parameterisation, missing process, problems with calibration, or615

one of several other possible reasons. Not all models are developed with the same purpose, and616

some LSM development may have focussed on very different aspects of the model, such as the617
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distribution of natural vegetation, which might lead to models that are conceptually consistent but618

observationally inconsistent when predicting heat fluxes. We cannot recommend specific LSM619

improvements but rather provide a framework for model developers against which they can check620

their developments.621

The validity of the benchmarking methodology in Best et al. (2015) was further evaluated in this622

study. It is worth noting that while PLUMBER may have undiscovered flaws, it is still extremely623

valuable: the relative poor performance of LSMs would likely have remained hidden under any624

previous model evaluation or intercomparison methodology.625
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TABLE 1. Fluxnet datasets used in PLUMBER.

Fluxnet Code Location Lat Lon IGBP Land Cover Type Timeframe Years

Amplero IT-Amp Italy 41.9041 13.6052 Croplands 2002-2008 4

Blodgett US-Blo California, USA 38.8953 -120.633 Evergreen Needleleaf 1997-2007 7

Bugac HU-Bug Hungary 46.6917 19.6017 Croplands 2002-2008 4

ElSaler2 ES-ES2 Spain 39.2756 -0.3153 Croplands 2004-2010 2

ElSaler ES-ES1 Spain 39.346 -0.3188 Permanent Wetlands 1999-2006 8

Espirra PT-Esp Portugal 38.6394 -8.6018 Woody Savannas 2002-2009 4

FortPeck US-FPe Montana, USA 48.3077 -105.102 Grasslands 1999-2013 7

Harvard US-Ha1 Massachusetts, USA 42.5378 -72.1715 Mixed Forests 1991-2013 8

Hesse FR-Hes France 48.6742 7.0656 Deciduous Broadleaf 1996-2013 6

Howard AU-How Australia -12.4943 131.152 Savannas 2001-2013 4

Howlandm US-Ho1 Maine, USA 45.2041 -68.7402 Mixed Forests 1995-2013 9

Hyytiala FI-Hyy Finland 61.8474 24.2948 Evergreen Needleleaf 1996-2013 4

Kruger ZA-Kru South Africa -25.0197 31.4969 Savannas 2000-2010 2

Loobos NL-Loo Netherlands 52.1679 5.744 Evergreen Needleleaf 1996-2013 10

Merbleue CA-Mer Ontario, Canada 45.4094 -75.5187 Permanent Wetlands 1998-2013 7

Mopane BW-Ma1 Botswana -19.9165 23.5603 Savannas 1999-2001 3

Palang ID-Pag Indonesia -2.345 114.036 Evergreen Broadleaf 2002-2013 2

Sylvania US-Syv US 46.242 -89.3477 Mixed Forests 2001-2009 4

Tumba AU-Tum Australia -35.6557 148.152 Evergreen Broadleaf 2000-2013 4

UniMich US-UMB Michigan, USA 45.5598 -84.7138 Deciduous Broadleaf 1998-2013 5
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TABLE 2. Models used in PLUMBER.

model developer/custodian name version in PLUMBER

CABLE
Commonwealth Scientific and Industrial Re-
search Organisation (CSIRO)

The Community Atmosphere Biosphere
Land Exchange model 2.0, 2.0 SLI

CHTESSEL European Centre for Medium-Range
Weather Forecasts

Carbon Hydrology Tiled ECMWF Surface
Scheme for Exchange over Land 1.1

COLASSiB Center for Ocean-Land-Atmosphere Studies (COLA) COLA-SSiB 2.0

ISBA-SURFEX

Centre National de Recherches
Météorologiques - Groupe d’études de
l’Atmosphère Météorologique (CNRM-
GAME)

Interaction Sol-Biosphère-Atmosphère Sur-
face Externalisée (ISBA-SURFEX) 3l-7.3, dif-7.3

JULES UK Met Office, Natural Environment Research Council the Joint UK Land Environment Simulator 3.1, 3.1 altP

Mosaic NASA Mosaic 1

NOAH NOAH The Community Noah Land-Surface Model 2.7.1, 3.3, 3.2

ORCHIDEE Institut Pierre Simon Laplace (IPSL)
Organising Carbon and Hydrology In Dy-
namic Ecosystems (ORCHIDEE) r1401
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TABLE 3. Standard statistical set of metrics used in PLUMBER. All metrics are based on half-hourly values.

In formulas, M represents model data, O represents observed flux tower data and n is the number of timesteps.

753

754

Metric Abbr. Formula

Mean Bias Error MBE ∑
n
i=1(Mi−Oi)

n

Normalised Mean Error NME ∑ |Mi−Oi |
∑ |Ō−Oi |

Standard Deviation difference sd

∣∣∣∣∣∣1−
√

∑Mi−M̄2

n−1√
∑Oi−Ō2

n−1

∣∣∣∣∣∣
Correlation coefficient r ∑

n
i=1(Mi−M̄)(Oi−Ō)√

∑
n
i=1(Mi−M̄)2

√
∑

n
i=1(Oi−Ō)2
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TABLE 4. Correlation between model metrics in Figure 7.

first.crossing first.cross.percent slope.difference slope.diff.significance

bias.decreasing -0.017 -0.019 -0.025 -0.006

first.crossing 0.990 0.029 0.0386

first.cross.percent 0.015 0.031

slope.difference 0.034
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process acts as a smoother, removing non-correlated noise from the model results. . . . . 54805
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FIG. 1. The locations of the 20 flux tower sites in the PLUMBER experiment. The IGBP vegetation type is

represented by color and the numbers indicate the of years of data used in the PLUMBER experiment. Site data

is given in Table 1.
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FIG. 2. Ranks of LSMs relative to benchmarks, averaged over all metrics and sites, after Figure 4 in (Best

et al. 2015). Major columns show different land surface models, minor columns show sensible heat (Qh) and

latent heat (Qle). In each column, the LSM is shown in black, and various benchmarks are shown in comparison.

The vertical axis shows the average performance rank for each model under 4 metrics over the 20 Fluxnet site

datasets. In each case, a lower value indicates better relative performance. The 3km27 model clearly out-

performs the LSMs for both variables, and the two linear regressions consistently outperform all LSMs for

sensible heat.
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FIG. 3. Histograms of differences between metric values for benchmarks and models with neighboring ranks,

for all models at all sites. Values are calculated by taking the difference of the metric value for each model (LSM

or one of the 5 benchmarks) from the model ranked next-worst for each LSM, Fluxnet site, metric, and variable.

The blue data shows the benchmark-to-benchmark metric differences. The red data show the differences between

the LSM and the next worst-ranked benchmark (e.g. if the model is ranked 4, the comparison with the 5th-ranked

benchmark). The green data show the difference between the LSM and the next best-ranked benchmark. Since

the models are ordered, all differences are positive (correlation is inverted before differences are calculated).
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FIG. 4. As for Figure 2, but each row represents an individual metric (see Table 3 for metric definitions). The

gray line shows the original LSM mean rank for comparison (as in Figure 2, though note that these data are only

comparable with the black line, and not the benchmarks which have also changed).
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FIG. 5. As for Figure 2, but each cell represents the average rank of all LSMs at each individual Fluxnet site.

The gray line is identical to that shown in Figure 4.
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FIG. 6. As for Figure 2, but averaged over daily, monthly, and seasonal time periods. The gray line is identical

to that shown in Figure 4.
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FIG. 7. Histograms of model spin-up metrics, based on daily averages, from all LSMs at all sites. From left to

right: 1) day at which the simulated series crosses the observed series; 2) as previous, but as a percentage of the

time series; 3) difference in the slopes of linear regressions of simulated and observed series over time (W/day);

4) significance of the difference in the previous metric - values left of the red line are significant at the α = 0.05

level (˜44% of all values); and 5) the rate at which the bias is decreasing, measured by mean(error)/slope(error)

- negative values indicate the simulations have a trend toward the observations. Colors indicate the Fluxnet site

at which the simulation is run.

835

836

837

838

839

840

841

49



CABLE 2.0 CABLE 2.0 SLI CHTESSEL COLASSiB 2.0 ISBA_SURFEX ISBA_SURFEX 3l JULES 3.1 JULES3.1_altP MOSAIC NOAH 2.7.1 Noah 3.2 NOAH 3.3 ORCHIDEE

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

3

4

5

Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle

ra
nk

● ● ● ● ● ●1lin 2lin 3km27 Manabe_Bucket.2 model Penman_Monteith.1

FIG. 8. As for Figure 2, with energy conservation constrained empirical models. The gray line is identical to

that shown in Figure 4.
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FIG. 10. As for Figure 2 with high-frequency response only, by metric - for this plot, LSMs are bias-corrected

on a daily basis, and then have the daily cycle in the errors removed. The gray line is identical to that shown in

Figure 4. The mean bias error metric is not included because it is trivially 0 due to the bias correction process.
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FIG. 11. As for Figure 2, split by daily cycle - the 4 rows represent the 6-hour periods around dawn (3am-

9am), noon (9am-3pm), dusk (3pm-9pm), and midnight (9pm-3am). The gray line is identical to that shown in

Figure 4.
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FIG. 12. As for Figure 2, but showing the results for three different means across all LSMs, by metric. The

gray line is identical to that shown in Figure 4. In general, we should expect means to perform better under

all metrics except the standard deviation metric, as the averaging process acts as a smoother, removing non-

correlated noise from the model results.
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FIG. 13. Mean error in Qh and Qle as a result of perturbing the initial canopy air temperature at each time

step, in CABLE at the Tumbarumba site, in south eastern Australia. Temperature was perturbed by ±(5, 2, 1,

0.5, 0.2)K, and a control run is included. All model parameters were left as default values. The response in Qh

to negative temperature perturbations is about 50% stronger than in Qle, and about 3 times stronger for positive

perturbations.
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